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Abstract Virtual microstructures having a systematic

variation of amount, mean size, standard deviation of size,

and spatial arrangement of intermetallics have been syn-

thesized, and their deformation behavior in uniaxial tension

has been evaluated using finite element analysis. Four

spatial arrangements of intermetallics have been consid-

ered in this work, namely: random, clustered, and two-

ordered structures. Various mathematical quantities have

been developed to quantify the severity of deformation

including plastic work density distribution (PWDD), per-

centile work-density volume criterion (PWC), and per-

centile stress volume criterion (PSC). This approach

eliminates the need for an external trigger in FEA to

achieve localization. The method developed has led to a

better understanding of the effect of different microstruc-

tural attributes on the process of deformation. This has

resulted in guidelines for optimizing the microstructure to

minimize material damage and thereby maximize ductility.

Introduction

Iron and other transition elements are common impurities

in commercial aluminum alloys. These impurities are

generally in the range of 0.2–0.3 wt%; lower levels lead to

a significant increase in the cost of the aluminum sheet.

Since the impurities have a very low solubility in alumi-

num, they generally precipitate out in the form of dispersed

intermetallics that are much harder than the aluminum

matrix. The intermetallics have a considerable effect in

decreasing the overall ductility and particularly accelerate

final fracture [1–5]. A typical microstructure containing

such intermetallics is shown in Fig. 1.

The micro-mechanisms of ductile fracture consist of

void nucleation, void growth, and final coalescence of the

growing voids. Void initiation occurs due to brittle fracture

of the intermetallics, or debonding at the particle–matrix

interface [6], causing matrix degradation and the material

begins to lose its load carrying capability. An independent

study on AA5754 aluminum sheets [7] showed that the

spatial distribution of the intermetallics has a profound

effect on the fracture strain and elongation to failure.

Hence, it is reasonable to assume that the distribution, size,

and volume fraction of the intermetallics play an important

role in the degree of matrix degradation and final failure.

The aim of this work is to study the effect of particle size,

its volume fraction, and distribution on deformation severity.

The numerical study involves introducing different sizes and

distribution of particles into a finite element model. The

particles are treated as elastic, whereas the matrix is assumed

to be elastic–plastic. In this analysis, no failure model is yet

taken, and will be the subject of a future study. The interface

is assumed to be perfect, and the particles are assumed not to

fail. This limits the applicability of this approach to identify

incipient localization before the actual debonding of the

particle from the matrix or particle fracture. This is a new

approach and will lead to better description of what can be

tolerated in the microstructure, since unlike steel, we cannot

decrease the amount of intermetallics without using excep-

tionally expensive aluminum.

Microstructure simulation

Synthetic microstructures were simulated by varying the

amount, size, and distribution (spatial pattern) of the sec-

ond phase particles in a continuous matrix using Monte
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Carlo methodology. The choice of amount and size of the

particles were based on measured microstructural quanti-

ties in rolled sheets of 6063 aluminum alloys. Three dif-

ferent volume fractions of the particles (0.01, 0.02, and

0.03) were simulated. The particles were assumed to be

circular with a lognormal size distribution which implies

that logarithmic values of the sizes are normally distrib-

uted. The different lognormal size distributions chosen,

shown in Fig. 2, were such that the desired mean and the

standard deviation (SD) of the size (not log of the sizes) are

achieved. The mean sizes used in the study are 10, 20, and

30 lm; and the standard deviations are 5, 10, and 15 lm.

The spatial occurrences of the particles are varied to pro-

duce four different patterns: random dispersion [Random

Sequential Addition (RSA)], clustered dispersion, square

lattice dispersion, and rotated square lattice dispersion. The

choice of these spatial arrangements is inspired by real life

examples of random [7], clustered [7], and ordered

microstructures [8] seen in commercial materials systems.

A total of 100 particles were simulated for each realization

of the microstructure. Parts of typical realizations for dif-

ferent spatial arrangements are given in Fig. 3.

Since 100 particles are taken (at random) from the

continuous lognormal size distribution, the collection

becomes a random set of a stochastic process. Due to the

random characteristic, the mean and standard deviation of

this set of 100 particles are never exactly equal to the

targeted mean and standard deviation of the lognormal

distribution. However, this set asymptotically approaches a

perfect lognormal distribution when taking the ensemble

mean of a large number of these sets. The realization space

is chosen as a square of a size such that the mean area

fraction of the particles in the square is the desired volume

fraction of the particles in the specimen. Since the set of

100 particles is a random set from the continuous

lognormal distribution, the area fraction of the realizations

is also not exactly equal to the targeted value. This is not a

shortcoming of the simulation, but a desired characteristic,

since we want to exactly mimic the real microstructure,

which shows these variations. To eliminate variations from

one realization to another, due to stochastic differences in

size distribution (and thus area fraction), all realizations for

a given mean and standard deviation were performed from

the same set of 100 particles. The complete details of all

the realizations; their area fractions, mean, and SD, along

with their targeted values, are provided in Table 1.

Similarly, on generating random locations of the same

set of 100 particles, no two realizations would be exactly

the same. This is due to the stochastic character of gener-

ating particle locations, which would be seen in RSA and

cluster arrangements. To study the variations due to this

stochastic process, three RSA realizations are generated for

the same 100 particles and compared.

Finite element modeling

The finite element model for the synthetic microstructural

analysis has been created using Hypermesh [9]. Since we

are dealing with a large number of particles and the process

of creating the finite element model for different
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Fig. 2 Different lognormal size distributions (in microns) for the

simulation of synthetic microstructure

Fig. 1 Typical microstructure of aluminum 6063 showing the Fe-

containing intermetallic particles as seen via BSE detector in SEM
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realizations is repetitive in nature, the entire process of

creating the model has been automated through Fortran

routines. These routines read the particle information and

write sets of command macros for Hypermesh that execute

these commands and create the finite element mesh.

Another set of Fortran routines reads the node and element

information from the mesh file and applies appropriate

boundary conditions. Figure 4 shows the finite element

Fig. 3 Different spatial patterns

simulated in this study

Table 1 Details of different

computer generated

microstructural realizations

S. No. Simulation ID Volume

percent

Mean particle

size (lm)

Standard deviation

of size (lm)

Spatial

arrangement

1 R_2_20_10_1 2 20 10 Random first instance

2 R_2_20_10_2 2 20 10 Random second instance

3 R_2_20_10_3 2 20 10 Random third instance

4 S_2_20_10_1 2 20 10 Square

5 T_2_20_10_1 2 20 10 Rotated-square

6 C_2_20_10_1 2 20 10 Clustered

7 R_1_20_10_1 1 20 10 Random

8 R_3_20_10_1 3 20 10 Random

9 R_2_10_10_1 2 10 10 Random

10 R_2_30_10_1 2 30 10 Random

11 R_2_20_5_1 2 20 5 Random

12 R_2_20_15_1 2 20 15 Random
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model of an alloy with 2% volume fraction second phase

particles. The particles are distributed randomly with a

lognormal size distribution with a mean of 20 lm and a

standard deviation of 10 lm.

The schematic diagram of the finite element model and

boundary conditions are shown in Fig. 5. The geometry

modeled here is a representative volume element (RVE1)

of the total microstructure. In other words, it is assumed

that translational tiling of these RVE’s constitutes the

whole material. Thus, in order to ensure continuity at the

edges, the deformation pattern of the edges of the model

has to be identical to that of a neighboring RVE. To

enforce this condition, a multi-point constraint (MPC)

boundary condition is applied on the edge BC (see Fig. 5),

such that it remains straight during deformation. It can be

mentioned here that the size of a RVE will depend on the

response of interest. In this study, the response of interest is

the incipient localization. Simulation results of different

realizations, having same mean particle size, standard

deviation, and volume fraction, are compared to ensure the

sufficiency of the RVE size. In all the cases the loading is

uniaxial. The displacement at the edge CD is prescribed to

attain a global strain of 40%.

The geometry is modeled using three-noded triangular

plane stress elements (CPS3) available in ABAQUS [11].

The implicit finite element solver of ABAQUS was

deployed with convergence tolerance parameter for resid-

ual force of 5 9 10-3 and criterion for displacement cor-

rection of 1 9 10-2. The matrix material is assumed to

obey J2 flow theory of plasticity [12], whereas, the particles

are assumed to be elastic with a Young’s modulus

E = 166 GPa and Poison’s ratio, m = 0.3. The stress–

strain response for the elastic–plastic matrix material was

represented by the piecewise-linear material hardening

model of ABAQUS as shown in Fig. 6. The interface

Fig. 4 A typical finite element model for random distribution of 2%

volume fraction particles
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Fig. 5 Schematic of the finite element model with boundary

conditions
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Fig. 6 Comparison of the overall stress–strain response of three

random realizations for 1, 2, and 3% volume fraction particles with a

monolithic single phase material with no particles (R_1_20_10_a_1

for example means the first instance of a random realization with 1%

volume fraction second phase, with mean particle size of 20 lm and

SD of 10 lm.)

1 Representative volume element (RVE) is a statistical concept which

implies that a mean property of a large sized sample (equal to or

greater than RVE) is statistically equal to the ensemble mean of many

smaller realizations [10]. The size of the RVE is given by statistical

convergence of the sample mean to the ensemble mean and is

characteristic of the microstructure and the property of interest.
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between the matrix and particles is assumed to be perfect

and the particles are assumed not to fail. The aim of the

present study is to investigate the effect of particle size,

volume fraction, and its distribution on the global defor-

mation of the particle matrix aggregate and on the local

deformation of the matrix material.

Different cases considered in this study are tabulated in

Table 1 and their abbreviations are shown in Table 2.

Results and discussion

The most common comparison performed in differentiating

mechanical properties of materials is their stress–strain

response. In light of this view, we compared the global

stress–strain response of three simulated Al alloys (two

phase aggregates) to the single-phase homogeneous Al

matrix material (Fig. 6). The alloy consists of a continuous

elastic–plastic Al matrix with a random dispersion of hard

second phase particles. All the three cases shown have the

same mean particle size (20 lm) and standard deviation

(10 lm) but different volume fractions of particles (0.01,

0.02, and 0.03). The global stress is computed on the edge

CD in Fig. 5 as

rg
22 ¼

1

A

Z

A

r22 dA; ð1Þ

where rg is the global stress in the current configuration,

and A is the current cross-sectional area.

Simulations show that the global stress–strain response

of the three aggregates analyzed is similar to the homo-

geneous material, which is not surprising since the parti-

cle–matrix aggregates behave like a composite. But since

the particle volume fractions are low, the rule of mixtures

would not suggest any significant effect on the stress–strain

response. However, for a volume fraction of 3%, localized

necking is observed in the matrix beyond 33% strain, and

the global stress curve drastically drops beyond this strain

value. It should be noted that no external trigger in the form

of inhomogeneity is provided to the model for localization.

The localization is self triggered due to the microstructural

heterogeneity. The equivalent plastic strain contour for this

sample is presented in Fig. 7. The figure shows the band of

high equivalent plastic strain where localized necking

would take place. Since no failure model is considered in

this analysis, the strain level calculated for localized

necking would be an overestimate of the true value. In

reality, there would be localized damage in the material (in

the form of particle fracture, interface debonding and void

nucleation), which would cause stress concentrations

leading to necking at a lower strain than predicted. It can

thus be concluded that the pre-necking global stress–strain

response behavior is incapable of differentiating between

pure materials and those with low volume fraction of

intermetallics.

In order to investigate the effect of particles on local

deformation behavior, the probability distribution function,

f ðWp
d Þ; of the plastic work density (PWD), Wp

d ; for each

volume element is investigated. The PWD is given by

W
p
d ¼

Z t

0

rij _ep
ijdt: ð2Þ

Here, the repeated index represents summation, and the

probability distribution function f ðWp
d Þ is defined such that

f ðWp
d Þ dW

p
d is the fraction of volume that has a PWD in the

range from Wp
d to Wp

d þ dWp
d .

Fig. 7 Contour of equivalent plastic strain for material containing

3% volume fraction particles at a global strain of 0.4. The band of

high equivalent strain indicates localized necking

Table 2 Different abbreviation and its description

Abbreviation Description

Homogeneous Homogeneous

A_V_M_S_X A—Spatial distribution pattern

R=[Random

S=[Square

T=[ Rotated-square

C=[Cluster

V—Volume fraction of particle in percent

M—Mean diameter of particle

S—Standard deviation in particle diameter

X—Number of Instances of the realization
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Close examination of the contours of PWD for the

material containing 2 vol% particles at a global strain level

of 0.366, Fig. 8, shows that the bulk of the material volume

has a PWD ranging between 45 and 90 MJ/m3, which is

within the range for the homogeneous material at this

strain. However, there are pockets in the volume where the

PWD is much higher. Hence, what could not be captured

by global stress–strain response can now be studied by

observing the local deformation behavior instead.

To further understand the effect of different microstruc-

tural realizations on failure initiation, a new parameter

termed as 99.9-percentile work-density volume criterion

(99.9 PWC or just PWC in short) is defined as a value of

PWD such that at a given global strain, 99.9% of the matrix–

particle aggregate volume2 has a PWD below that level, or in

other words 0.1% of the volume has a PWD above that level.

This is expressed by the following equation:

ZPWC

0

f ðWp
d Þ dWp

d ¼ 0:999

or

Z1

PWC

f ðWp
d Þ dWp

d ¼ 0:001

9>>>>>>>>>>=
>>>>>>>>>>;

ð3Þ

These equations are essentially a measure of the

asymptotic tail of the PWD probability distribution

function. Since the failure would not initiate on the

average values but at the extremum, this parameter would

be strongly correlated to failure initiation. Realizations with

a large value of PWC would indicate that there are regions

with high plastic deformation indicating possible early

failure as compared to realizations with low PWC.

Another mode of failure initiation is through particle

fracture. Since the particles are completely elastic, the

fracture of particles would be based on a stress criterion.

Hence another new parameter, similar to PWC, termed as

99.9-percentile stress volume criterion (PSC) is defined,

which is the major principal stress such that at a given

global strain, 99.9% of the particle volume has a stress

below this value.

Effect of spatial distribution of particles

Plastic work density distribution (PWDD)

The effect of different realizations of random distribution

for a given volume fraction of, for example, 2% particles, at

different strain levels is shown in Fig. 9. In these three

cases, the microstructural realizations were performed with

the same 100 particles randomly distributed in the matrix

that results in three different instances of random micro-

structural realizations which have the same volume fraction,

same mean, and same standard deviation (S.No. 1, 2, 3 in

Table 1). The PWD for a homogeneous material is also

plotted in the same figure. It is seen that the PWDD for a

homogeneous material is almost a delta function with all the

elements having essentially the same amount of plastic

work. On the other hand, the material containing 2 vol%

particles shows a spread in the PWDD distribution, which

increases with an increase in the global strain. This indicates

that certain regions of the matrix in the material containing

the particles undergo a higher local deformation with a

PWD significantly greater than the homogeneous material.

One can also observe that at all strains the maximum fre-

quency of PWDD occurs at a higher value of PWD than the

homogeneous material. The probability distribution func-

tions of Wp
d for the three different instances having the same

random arrangement with the same volume fraction, mean,

and SD (S.No. 1, 2, 3 of Table 1) do not show a notable

difference, indicating that all instances yield statistically

identical results. This implies that the size of the realization

is of the order of the RVE for this material. This also means

that the probability distribution functions of Wp
d can be used

as an indicator to gauge the size of RVE.

Plots of PWDD for square, rotated-square, and clustered

spatial arrangements (S.No. 4, 5, 6 in Table 1), Fig. 10,

also show similar trends of broadening of the distribution

with increasing strain. At all strain levels the rotated-square

arrangement of particles shows a narrower band of plastic

Fig. 8 Contour of PWD at a global strain of 0.366

2 It should be noted that since the particles are modeled as completely

elastic, the plastic work density would only be present in the matrix.
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work densities, as inferred from a higher peak frequency,

indicating that they are closest to the homogeneous mate-

rial in their PWDD.

Percentile work-density volume criterion (PWC)

The plot of PWDD contains information for all the volume

elements, so subtle differences in the tail of the distribution

at high values of PWD are not apparent. These differences

are captured in the variable PWC. The values of PWC for

three different instances of the same random realization

(for the same 100 particles, S.No. 1, 2, 3 of Table 1) are

plotted in Fig. 11, which shows a pronounced increase in

PWC for heterogeneous realizations in comparison to the

homogeneous material. This indicates the probability of

failure of the matrix at lower strain levels for the material

containing the particles.

Similar plots for different spatial arrangements (square,

rotated-square, and clustered, i.e., S.No. 1, 4, 5, 6 in

Table 1) are given in Fig. 12. It is seen that the PWC

values for realizations having random, clustered, and

square arrangements are very close and within stochastic

variations. On the other hand, the realization containing a
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rotated-square arrangement of particles has significantly

lower values of PWC, which are much closer to the

homogeneous material, indicating that this distribution of

particles is least damaging to deformation. This distribution

is indeed understandable since a rotated-square lattice

provides the most open arrangement in two-dimensional

space with, on an average, each particle being most distant

from each other [13]. The more surprising observation is

that the square arrangement (not the rotated-square), in

spite of being also an equally open arrangement, shows

significantly high values of PWC. Thus, the alignment of

the tensile axis with the particle arrangement has a pro-

found effect on the deformation, which is different in the

two square lattices.

Percentile stress volume criterion (PSC)

Till now all the analysis was focused on the severity of

deformation of the matrix, but equally important is the

failure of particles. Since the particles are elastic they

would not have any plastic work associated with them and

would fail based on some stress criterion. This has led to

the 99.9 PSC of the particles. The plots of PSC for different

spatial arrangements (S.No. 4, 5, 6 in Table 1) and dif-

ferent realizations (S.No. 1, 2, 3 in Table 1) of random

arrangements are given in Fig. 13. Variations for different

realizations of random arrangements are seen and attrib-

uted to the stochastic nature of the microstructure that

occurs in real random materials from region to region. The

differences in square and rotated-square realizations are

real and cannot be associated with stochastic variations,

because these are fixed and unique arrangements, although

there could be slight variations due to coupling of particle

sizes with the spatial locations. The most interesting and

counterintuitive observation is that the PSC in the clus-

tered arrangement is the lowest among all the spatial

arrangements. This can be thought of as better load sharing

among particles due to a clustered arrangement. However,

the PSC values are maximum for random arrangements.

This could be due to the presence of isolated particles in

this arrangement that may not be sharing the load with any

of the other particles.

Thus particles are most likely to fail in a random

arrangement and least likely to fail in a clustered

arrangement, while from the previous section the matrix is

least likely to fail when particles are in a rotated-square

arrangement and almost equally likely to fail in all other

arrangements.

Effect of volume fraction of particles

Figure 14 displays the PWDD at three global strains for

different targeted volume fraction (1, 2, and 3%) of parti-

cles arranged randomly (S.No. 1, 7, 8 in Table 1). The

difference in PWDD between the three volume fractions

increases with increasing global strain. It is clear from the

figure that the likelihood of having some regions of the

matrix at much higher PWD (Wp
d ) is maximum for the

structure with 3% volume fraction of particles. This implies

that the matrix damage would be most pronounced in the

highest volume fraction material.

A comparison of the 99.9 PWC for realizations with

different volume fractions together with that for the

homogeneous material is plotted in Fig. 15. It can be seen

that the PWC is higher for these realizations compared to

the homogeneous material, and is greater for higher volume

fraction of particles. This indicates that materials with a

lower volume fraction of particles have a lower severity of

matrix deformation compared to those with a higher vol-

ume fraction of particles. The sudden increase of PWC for
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material with 3% volume fraction of particles, at higher

global strains, is due to the formation of a localized neck

beyond a global strain of 0.33.

The effect of volume fraction on the stress state of the

particles is shown in a plot of PSC versus global strain in

Fig. 16. The data for realizations of 1 and 2% volume

fraction particles do not differ considerably, however, the

PSC for the 3% volume fraction particles is substantially

lower. This indicates that it is less likely for particles to fail

at higher volume fractions than lower volume fractions.

This result is in line with the plots in Fig. 13, where it was

concluded that a clustered arrangement would lead to least

particle fracture. One can relate the two cases by visual-

izing the clustered arrangement as a collection of pockets

of high volume fraction. The same argument of better load

sharing, as used in that section, holds good for these

observations. Hence, we see that an increase in particle

volume fraction increases the severity of matrix deforma-

tion, but decreases the likelihood of particle fracture.

Effect of mean and standard deviation of particle size

Very little distinction in the plots of PWDD for different

particle sizes and standard deviation (S.No. 1, 9, 10, 11, 12
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in Table 1) is observed (Fig. 17). Similarly, very little

difference is seen in the 99.9 PWC plots (Fig. 18) for

different mean sizes and SDs. The PWC plots for realiza-

tions with 10-lm particle size and 15-lm standard devia-

tion are marginally higher than plots with other values of

mean and SD. Overall, the differences are very small and

the deformation severity of the matrix cannot be strongly

correlated with either of the two variables. However, the

stress in the particles (as seen in the plot of PSC in Fig. 19)

shows a strong correlation with size and SD. It is seen that

an increase in mean particle size decreases the PSC, and

thus decreases the likelihood of particle fracture (with the

assumption that all the particles fail at the same stress and

the weakest link theory does not hold). This is counterin-

tuitive, since one would expect just the opposite; however,

closer examination of the situation shows that for a con-

stant volume fraction, an increase in particle size would

result in a decrease in the total number of particles, which

could decrease load transfer to the particles, i.e., less load

from the matrix would be shared by the particles, leading to

a decrease in PSC. With an increase in particle size, at

constant volume fraction, the probability of finding a par-

ticle decreases (number of particles per unit area is inver-

sely proportional to the square of particle size). A direct

correlation is seen in SD with PSC, which increases with an

increase in the SD of the particles. Thus, one can conclude

that variations in mean and SD of particle sizes does not

have a pronounced effect on the severity of matrix defor-

mation. However, stresses in particles increase with

decreasing mean and increasing SD.

It should be noted that this work eliminates the need for

the introduction of an unrealistic discontinuity [14–16] in

the material for predicting localized necking since it

actually brings in inherent microstructural inhomogenei-

ties. An example of this is the realization with 3% volume

fraction particles, where necking is predicted due to the

presence of hard second phase particles. But since this

study does not consider matrix cavitation, particle failure

and particle debonding at particle–matrix interfaces, the

strains for the onset of localized necking are overestimated.
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It is seen that the factors that cause an increase in

severity of matrix deformation may many times decrease

the likelihood of particle fracture. Thus, the optimal

microstructure would vary depending on the strength and

failure criterion of matrix and particles. A schematic table

is given (Table 3) to provide guidelines for determining the

optimal microstructure, i.e., with maximum ductility for

different matrix and particle properties. Two cases are

considered, one with weak matrix and strong interface and

particles, and the other with strong matrix and interface

with weak particles. A low volume fraction of particles is

not always the optimal solution as is seen in the strong

matrix interface case. Since in the case of aluminum alloys,

the matrix is weaker than the particles, the optimal solution

would be in minimizing the volume fraction of particles,

provided this does not impact the cost too much.

The inferences drawn from the above analysis should be

seen in the light of the assumptions made in this approach.

The two principal assumptions of this approach (perfect

interface and non-failing particles) are valid only at the

onset of localization and not throughout the deformation

process. Hence, it would be inappropriate to extend the

range of applicability of these results beyond the incipient

localization regime. Moreover, another tacit assumption

made in this approach is that the matrix is isotropic and

homogeneous, whereas the intended application of this

approach would be in alloy systems that are polycrystalline

[17]. Hence, incipient localization would be triggered not

just by second phase particles, but also from any form of

inhomogeneity including the discrete individual grains in

the polycrystal matrix.

Conclusions

Uniaxial tension simulations using finite element analysis

on virtual microstructure was performed. This approach

eliminates the need for an external trigger in FEA to

achieve localization. The present work has developed the

concept of calculating the local PWD, PWDD, PWC, and

PSC to understand damage evolution and failure caused by

the presence of second phase particles in aluminum sheets.
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It is concluded that the global stress–strain response

behavior is incapable of differentiating pure materials with

those having low volume fraction of intermetallics. PWC

and PSC are the most sensitive parameters that reflect the

influence of intermetallics on formability. The following

conclusions emerge that enable us to design microstruc-

tures that minimize their effect on plasticity and thus on

formability:

1. The presence of intermetallics (on the order of 1–3%

volume fraction) does not significantly alter the global

load versus displacement curve, but causes large

differences in localized plastic-work densities and

stresses in the material.

2. The matrix is least likely to fail from a rotated-square

arrangement of particles and almost equally likely to

fail in all other arrangements as seen by PWC. The

particles, on the other hand, are most likely to fail in a

random arrangement, which shows the maximum PSC,

and least likely to fail in clustered arrangements.

3. An increase in particle volume fraction increases the

severity of matrix deformation but decreases the

likelihood of particle fracture as seen by PWC and

PSC, respectively.

4. Variations in mean and standard deviation (SD) of

particle sizes does not have a pronounced effect on the

severity of matrix deformation, since PWC is least

affected by these changes. However, stresses in the

particles increase with decreasing mean and increasing

SD as seen by changes in PSC.

5. Results of this work suggest that to maximize form-

ability in the presence of second phase particles, in

spite of efforts to reduce their volume fraction, their

spatial arrangement should be rotated-square, and they

should have a narrow size distribution with larger

particle sizes to minimize PWC.
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